En savoir plus

Notre utilisation de cookies

« Cookies » désigne un ensemble d’informations déposées dans le terminal de l’utilisateur lorsque celui-ci navigue sur un site web. Il s’agit d’un fichier contenant notamment un identifiant sous forme de numéro, le nom du serveur qui l’a déposé et éventuellement une date d’expiration. Grâce aux cookies, des informations sur votre visite, notamment votre langue de prédilection et d'autres paramètres, sont enregistrées sur le site web. Cela peut faciliter votre visite suivante sur ce site et renforcer l'utilité de ce dernier pour vous.

Afin d’améliorer votre expérience, nous utilisons des cookies pour conserver certaines informations de connexion et fournir une navigation sûre, collecter des statistiques en vue d’optimiser les fonctionnalités du site. Afin de voir précisément tous les cookies que nous utilisons, nous vous invitons à télécharger « Ghostery », une extension gratuite pour navigateurs permettant de les détecter et, dans certains cas, de les bloquer.

Ghostery est disponible gratuitement à cette adresse : https://www.ghostery.com/fr/products/

Vous pouvez également consulter le site de la CNIL afin d’apprendre à paramétrer votre navigateur pour contrôler les dépôts de cookies sur votre terminal.

S’agissant des cookies publicitaires déposés par des tiers, vous pouvez également vous connecter au site http://www.youronlinechoices.com/fr/controler-ses-cookies/, proposé par les professionnels de la publicité digitale regroupés au sein de l’association européenne EDAA (European Digital Advertising Alliance). Vous pourrez ainsi refuser ou accepter les cookies utilisés par les adhérents de l'EDAA.

Il est par ailleurs possible de s’opposer à certains cookies tiers directement auprès des éditeurs :

Catégorie de cookie

Moyens de désactivation

Cookies analytiques et de performance

Realytics
Google Analytics
Spoteffects
Optimizely

Cookies de ciblage ou publicitaires

DoubleClick
Mediarithmics

Les différents types de cookies pouvant être utilisés sur nos sites internet sont les suivants :

Cookies obligatoires

Cookies fonctionnels

Cookies sociaux et publicitaires

Ces cookies sont nécessaires au bon fonctionnement du site, ils ne peuvent pas être désactivés. Ils nous sont utiles pour vous fournir une connexion sécuritaire et assurer la disponibilité a minima de notre site internet.

Ces cookies nous permettent d’analyser l’utilisation du site afin de pouvoir en mesurer et en améliorer la performance. Ils nous permettent par exemple de conserver vos informations de connexion et d’afficher de façon plus cohérente les différents modules de notre site.

Ces cookies sont utilisés par des agences de publicité (par exemple Google) et par des réseaux sociaux (par exemple LinkedIn et Facebook) et autorisent notamment le partage des pages sur les réseaux sociaux, la publication de commentaires, la diffusion (sur notre site ou non) de publicités adaptées à vos centres d’intérêt.

Sur nos CMS EZPublish, il s’agit des cookies sessions CAS et PHP et du cookie New Relic pour le monitoring (IP, délais de réponse).

Ces cookies sont supprimés à la fin de la session (déconnexion ou fermeture du navigateur)

Sur nos CMS EZPublish, il s’agit du cookie XiTi pour la mesure d’audience. La société AT Internet est notre sous-traitant et conserve les informations (IP, date et heure de connexion, durée de connexion, pages consultées) 6 mois.

Sur nos CMS EZPublish, il n’y a pas de cookie de ce type.

Pour obtenir plus d’informations concernant les cookies que nous utilisons, vous pouvez vous adresser au Déléguée Informatique et Libertés de l’INRA par email à cil-dpo@inra.fr ou par courrier à :

INRA
24, chemin de Borde Rouge –Auzeville – CS52627
31326 Castanet Tolosan cedex - France

Dernière mise à jour : Mai 2018

Menu Logo Principal Ecole Nationale Vétérinaire d'Alfortville Univesité Paris-Saclay

Biologie du Développement et Reproduction

Biologie du Développement & Reproduction

Différenciation gonadique et ses perturbations (DGP)

Animation : Eric Pailhoux (eric.pailhoux@inra.fr)

L’équipe DGP est composée de 11 personnes, possédant des compétences en physiologie et endocrinologie de la reproduction ainsi qu’en biologie moléculaire, génétique et épigénétique des animaux de rente. L’équipe développe des approches de génomique fonctionnelle chez des espèces modèles de mammifères (souris, lapins, petits ruminants) en faisant appel à l’atelier de modification génomique de l’unité qui met en œuvre les nouvelles technologies de modifications ciblées du génome (TALEN, CRISPR/cas9).

Composition : Corinne Cotinot (DR1, HDR), Geneviève Jolivet (DR2, HDR), Béatrice Mandon-Pépin (CR1), Maëlle Pannetier (CR1), Eric Pailhoux (DR2, HDR), Dominique Thépot (CR1), Nathalie Daniel-Carlier (IE2), Erwana Harscoët (AI), Marjolaine André (TR), Elodie Lesueur (TR), Aurélie Allais-Bonnet (CDD ALLICE), Clara Gobé (2ème année de thèse).

ER3 Photo groupe

L’équipe étudie le fonctionnement des gènes à l’origine de la différenciation des gonades.

Un des objectifs est de préciser les gènes et les mécanismes d’action qui sous-tendent les grandes étapes de la différenciation des gonades : choix de la destinée gonadique, méiose des cellules germinales, formation des follicules, maturation folliculaire, spermatogenèse, dans les espèces d’intérêt agronomique. Un deuxième objectif est d’étudier comment le fonctionnement de ces gènes est influencé par divers facteurs de l'environnement (perturbateurs endocriniens, particules diesel, alimentation...) dans les deux sexes et chez plusieurs espèces.

Thématique globale

La fertilité d’un individu dépend d'une part de la quantité et de la qualité des gamètes, et d'autre part, du dialogue harmonieux des cellules germinales avec les cellules somatiques des gonades. Ces paramètres sont déterminés très tôt chez le fœtus de mammifère, dès le moment où les cellules germinales colonisent les crêtes génitales, environ au cours du premier tiers de la gestation. La multiplication de ces cellules germinales primordiales – à l’origine de la constitution du stock de cellules gamétiques - est une première étape clef de l’acquisition de la fertilité. Une deuxième étape concerne leur différenciation et leur entrée en méiose. Tout au long des différenciations des cellules germinales, les cellules somatiques des gonades (cellules de soutien, cellules stéroïdogènes) vont se co-différencier et jouer un rôle clé dans l'élaboration des futurs gamètes et le développement des dimorphismes sexuels. Malgré l’identification –faite essentiellement chez la souris- des cascades de gènes et de mécanismes moléculaires à l’origine de ces phénomènes, une série de controverses persiste quant à la pertinence des modèles établis. Mieux comprendre les mécanismes qui gouvernent le destin des cellules germinales présente donc un intérêt chez les animaux de rente, mais aussi chez l’homme ou la perturbation de la différenciation des gonades est à l’origine d’infertilités ou de cancers.

ER3 Image 1

Thématiques scientifiques

Principales thématiques

  • Etude de la régulation et du mécanisme d’action de gènes impliqués dans l’orientation de la différenciation sexuelle : gènes FOXL2, AROMATASE, DMRT1, TRIMP28
  • Mise en évidence et caractérisation du rôle de nouveaux gènes codants (Topaz1, Dmxl2) et d’ARNs non codants longs dans les étapes clés de la différenciation gonadique.
  • Influence de perturbateurs endocriniens / polluants sur la différenciation et le fonctionnement des gonades (BPA, exposition à des particules fines de gaz d’échappement)
  • Analyse des modifications d’histones présentes au niveau des spermatozoïdes pour rechercher des associations entre marques épigénétiques et phénotype de la descendance.

Les modèles animaux étudiés

Les modèles animaux permettent la mise en place d’expérimentations complexes (action de polluants, régimes alimentaires spécifiques, traitements par des hormones ou des analogues…). Ils sont développés sur le centre de Jouy-en-Josas (Unité Commune d’Expérimentation Animale UCEA et IERP). Des animaux modèles génétiquement modifiés sont également produits pour analyser les effets de sur ou sous-expression géniques. Enfin, l’équipe envisage l’étude de mutations humaines qui auront été reproduites chez des animaux (non murins) par remplacement allélique (KI).

Outre le modèle souris, les espèces utilisées sont les ruminants et le lapin.

Approches méthodologiques

  • Histologie, immunohisto/cytochimie, hybridation in situ.
  • Analyses transcriptomiques (RT-qPCR, micro-array et RNA-sequencing)
  • Analyses épigénétiques (ChIP-qPCR et ChIP-sequencing)
  • Culture d'explants gonadiques ex-vivo
  • Mesure d’activité enzymatique, dosages hormonaux
  • Génomique et épigénomique fonctionnelles

Collaborations, partenariats et réseaux

  • A l'INRA
  • Les autres équipes de l'unité BDR (ER1, ER2, ER4 et ER5)
  • Unités expérimentales animales UCEA, IERP, Jouy en Josas
  • NBO, Jouy-en-Josas
  • GABI, Jouy-en-Josas
  • URA, Nouzilly
  • LPGP, Rennes
  • SIGENAE UR875 BIA, Castanet-Tolosan
  • GENPHySE, Castanet-Tolosan
  • CNRGV, Toulouse
  • Plateformes MIMA2, PAPSSO, Jouy en Josas
  • Autres collaborations en France
  • ALLICE
  • Laurent Lagrost, Université de Bourgogne, INSERM UMR866
  • Gabriel Livera, Virginie Rouiller-Fabre, Marie Justine Guerquin, INSERM UMR967/CEA
  • Marie Christine Chaboissier, INSERM U1091 / CNRS 7277, Nice
  • Céline Guigon, INSERM U1133, Paris
  • Francis Poulat, Brigitte Boizet-Bonhoure, CNRS UPR 1142, Montpellier
  • Norbert Ghyselinck, CNRS UMR7104, INSERM U964, université de Strasbourg
  • Reiner VEITIA, Institut Jacques Monot, Université Paris-Diderot
  •  
  • International
  • COST action BM1308 SALAAM "Sharing Advances on Large Animal Models"
  • International Society for Transgenic Technologies (http://www.transtechsociety.org/)
  • Pr. Paul Laissue, Universidad del Rosario, Bogota, Colombia
  • Pr Paul Fowler, Institute of Medical Sciences, University of Aberdeen, UK
  • Richard G Lea, University of Nottingham, UK

 

Publications récentes significatives (2014-2019)

Transgenic short-QT syndrome 1 rabbits mimic the human disease phenotype with QT/APD shortening in the atria and ventricles and increased VT/VF inducibility. Odening, K. E., Bodi, I., Franke, G., Rieke, R., de Medeiros, A. R, Perez-Feliz, S, Fuerniss, H, Mettke, L, Michaelidis, K, Lang, C. N, Steinfurt, J, Pantulu, N, D, Ziupa, D, Menza, M, Zehender, M, Bugger, H, Peyronnet, R. Behrends, J, Doleschall, Z, zur Hausen, A, Bode, C, Jolivet, G, Brunner, M. Eur Heart J, 2019, 400 (10): 842-853

A novel evolutionary conserved mechanism of RNA stability regulates synexpression of primordial germ cell-specfic genes prior to the sex-determination stage.  Herpin, A, Schmidt, C, Kneitz, S, Gobé, C, Regensburger, M, Le Cam, A, Montfort, J, Lillesaar, C, Wilhlm, D, Kraeussling, M, Mourot, B, Porcon, B, Pannetier, M, Pailhoux, E, Etwiller, L, Dolle, DM, Guigen, Y, Schartl, M. Plos Biology, 2019, 17 (4): e3000185

Genetic defects in human azoospermia. Ghieh, F, Mitchell, V, Mandon-Pepin, B, Vialard, F. Basic Clin Androl, 2019, 29, 4 Review

Long-term exposure to chemicals in sewage sludge fertilizer alters liver lipid content in females and cancer marker expression in males. Filis P, Walker N, Robertson L, Eaton-Turner E, Ramona L, Bellingham M, Amezaga MR, Zhang Z, Mandon-Pépin B, Evans NP, Sharpe RM, Cotinot C, Rees W.D, O’Shaughnessy P, Fowler PA. Environ Int, 2019, 124: 98-108  

Dual role of DMXL2 in olfactory information transmission and the first wave of spermatogenesisGobé C, Elzaiat M, Meunier N, André M, Sellem E, Congar P, Jouneau L, Allais-Bonnet A, Naciri I, Passet B, Pailhoux E, Pannetier M.  Plos Genetics, 2019, 15 (2): e1007909, 1-28 

The unusual rainbow trout sex determination gene hijacked the canonical vertebrate gonadal differentiation pathway. Bertho S, Herpin A, Branthonne A, Jouanno E, Yano A, Nicol B, Muller T, Pannetier M, Pailhoux E, Miwa M, Yoshizaki G, Schartl M, Guigen Y. PNAS, 2018, 115 (50): 12781-12786 

Impact of gestational exposure to diesel exhaust on offspring gonadal development: experimental study in the rabbit. Bourdon M, Torres L, Monniaux D, Faure C, Levy R, Tarrade A, Rousseau D, Chavatte-Palmer P, Jolivet G. J DOHaD, 2018, 9 (5): 519-529 

An initiator codon mutation in SD2 causes recessive embryonic lethality in Holstein cattle. Fritz S, Hoze C, Rebours E, Barbat M, Bizard M, Escouflaire C, Vander Jagt C, Boussaha M, Grohs C, Allais Bonet A, Philippe M, Vallée A, Amigues Y J, Hayes B, Boichard D, Capitan A. J Dairy Sci, 2018, 101 (7): 6220-6231

An assessment of fixed and native chromatin preparation methods to study histone post-translational modifications at a whole genome scale in skeletal muscle tissue. David SA, Hennecquet-Antier C, Pannetier M, Aguirre-Lavin T, Crochet S, Bordeau T, Couroussé N, Brionne A, Collin A, Coustham V. Biol Proced Online, 2017, 19: 10 

Amplification of R-spondin1 signaling induces granulosa cell fate defects and cancers in mouse adult ovary. De Cian MC, Pauper E, Bandiera R, Vidal VPI, Sacco S, Gregoire EP, Chassot AA, Panzolini C, Whilhelm D, Pailhoux E, Youssef SA, De Brui A, De Teerds K, Schedl A, Gillot I, Chaboissier MC. Oncogene, 2017, 36 (2): 208-218 

Recombinant human plasma phospolipid transfer protein (PLTP) to prevent bacterial growth and to treat sepsis. Deckert V, Lemaire S, Ripoll PJ, Pail de Barros JP, Labbé J, Chabert-Le Borgne C, Turquois V, Maquart G, Larose D, Desroche N, Ménétrier F, Le Guern N, Lebrun LJ, Desrumeaux C, Gautier T, Grober J, Thomas C, Masson D, Houdebine LM, Lagrost L. Sci Reports, 2017, 7 (1) 3053, 16 pages 

In mammalian fœtal testes, SOX9 regulates expression of its target genes by binding to genomic regions with conserved signatures. Rahmoun M, Lavery R, Laurent-Chaballier S, Bellora N, Philipp GK, Rossitto M, Pailhoux E, Cammas F, Chung J, Bagheri-Fam S, Murphy M, Bardwell V, Zarhower D, Boizet-Bonhoure B, Clair P, Harley VR, Poulat F. Nucleic Acids Res, 2017, 45 (12): 7191-7211 

A specific role for PRND in goat fetal Leydig cells is suggested by prion family gene expression during gonad development in goats and mice. Allais-Bonnet A, Castille J, Pannetier M, Passet B, Elzaïat M, André M, Montazer-Torbati F, Moazami-Goudarzi K, Vilotte JL, Pailhoux E. FEBS Open Bio, 2016, 6 (1): 4-15 

Foxl2 and its relatives are evolutionary conserved players in gonadal sex differentiation. Bertho S, Pasquier J, Pan Q, Le Trionnaire G, Bobe J, Postlewait J, Pailhoux E, Schartl M, Herpin A, Guigen Y. Sex Dev, 2016, 10 (3): 111-129 

Timing of maternal exposure and fetal sex determine the effects of low-level chemical mixture exposure on the fetal neuroendocrine system in sheep. Bellingham M, Fowler P A, MacDonald ES, Mandon-Pépin B, Cotinot C, Rhind S, Sharpe RM, Evans NP. J Neuroendocrinol, 2016, 28 (12) 

The fetal ovary exhibits temporal sensitivity to a ‘real-life’mixture of environmental chemicals. Lea RG, Amezaga MR, Loup B, Mandon-Pépin B, Stefansdottir A, Filis P, Kyle C, Zhang Z, Allen C, Purdie L, Jouneau L, Cotinot C, Rhind MS, Sinclair D. K, Fowler PA. Sci Reports, 2016, 6: 22279 

A reverse genetic approach identifies an ancestral frameshift mutation in RP1 causing recessive progessive retinal degeneration in European cattle Breeds. Michot P, Chahory S, Marete A, Grohs C, Dagios D, Donzel E, Aboukadiri A, Deloche MC, Allais-Bonnet A, Chambrial M, Barbey S, Genestout L, Boussaha M, Danchin-Burge C, Fritz S, Boichard D, Capitan A. Genet Sel Evol, 201648 (1): 56 

Involvement of FOXL2 and RSPO1 in ovarian determination, development, and maintenance in mammals. Pannetier M, Chassot AA, Chaboissier MC, Pailhoux E. Sex Dev, 2016, 10 (4): 167-184 

Sex reversal in non-human placental mammals.  Parma P, Veyrunes F, Pailhoux E. Sex Dev, 2016, 10 (5-6): 326-344  

Analysis of STAT1 expression and biological activity reveals interferon-tau-dependent STAT1-regulated SOC genes in the bovine endometrium. Vitorino Carvalho A, Eozenou C, Healey GD, Forde N, Reinaud P, Chebrout M, Gall L, Rodde N, Lesage-Padilla A, Giraud-Delville C, Leveugle M, Richard C, Sheldon IM, Lonergan P, Jolivet G, Sandra O. Reprod Fertil Dev, 2016, 28 (4): 459-474 

Spatio-temporal gene expression profiling during in vivo early ovarian folliculogenesis: integrated transcriptomic study and molecular signature of early follicular growth. Bonnet A, Servin B, Mulsant P, Mandon-Pépin B. Plos One, 2015, 10 (11): e141482

TOPAZ1, a germ cell specific fator, is essential for male meiotic progession. Luangpraseuth-Prosper A, Lesueur E, Jouneau L, Pailhoux E, Cotinot C, Mandon-Pépin B. Dev Biol, 2015, 406 (2): 158-171 

Whole-genome sequencing identifies a homozygous deletion encompassing exons 17 to 23 of the integrin beta 4 gene in a Charolais calf with junctional epidermolysis bullosa. Michot P, Fantini O, Braque R, Allais-Bonnet A, Saintilan R, Grohs C, Barbieri J, Genestout L, Danchin-Burge C, Gourreau J-M, Boichard D, Pin D, Capitan A. Genet Sel Evol, 2015, 47 (37): 1-7 

Transgenic rabbits expressing ovine PrP are susceptible to scrapie. Sarradin P, Viglietta C, Limouzin C, Andréoletti O, Daniel-Carlier N, Barc C, Leroux-Coyau M, Berthon P, Chapuis J, Rossignol C, Gatti J-L, Belghazi M, Labas V, Vilotte J-L, Beringue V, Lantier F, Laude H, Houdebine LM. Plos Pathogens, 2015, 11 (8), e1005077 

Genome-wide next generation DNA and RNA sequencing reveals a mutation that perturbs splicing of the phosphatidylinositol glycan anchor biosynthesis class H gene (PIGH) and causes arthrogryposis in Belgian Blue cattle. Sartelet A, Wanbo L, Pailhoux E, Richard C, Tamma N, Karim L, Fasquelle C, Druet T, Coppieters W, Georges M, Charlier C. BMC Genomics, 2015, 16: 316 

Role of the prion protein family in the gonads. Allais-Bonnet A, Pailhoux E. Frontiers in Cell Dev Biol, 2014, 2: 56 

FOXL2 is a female sex–determining gene in the goat. Boulanger L, Pannetier M, Gall L, Allais-Bonnet A, Elzaiat M, Le Bourhis D, Daniel N, Richard C, Cotinot C, Ghyselinck NB, Pailhoux E. Curr Biol, 2014, 24 (4): 404-408

High-Throughout sequencing analyses of XX genital ridges lacking FOXL2 reveal DMRT1 Up-regulation before SOX9 expression during the sex-reversal process in goatsElzaiat M, Jouneau L, Thépot D, Klopp C, Allais-Bonnet A, Cabau C, André M, Chaffaux S, Cribiu EP, Pailhoux E, Pannetier M. Biol Reprod, 2014, 91 (6): 153, 1-14  

Does grazing on biosolids treated pasture pose a pathophysiological risk associated with increased exposure to endocrine disrupting compounds. Evans NP, Bellingham M, Sharpe RM, Cotinot C, Rhind SM, Kyle C, Erhard H, Hombach-Klonisch S, Lind PM, Fowler PA. J Anim Sci, 2014, 92 (8): 3185-3198 

Attitudes towards genetically modified animals in food production. Frewer LJ, Coles D, Houdebine LM, Kleter GA. British food journal, 2014, 116 (8): 1291-1313 

Induction of body weight loss through RNAi-knocdown of APOBEC1 gene expression in transgenic rabbits. Jolivet G, Braud S, Da Silva B, Passet B, Harscoët E, Viglietta C, Gautier T, Lagrost L, Daniel-Carlier N, Houdebine LM, Harosh I. PLos One, 2014, 9 (9): e106655

Maternal high-fat diet induces follicular atresia but does not affect fertility in adult rabbit offspring. Leveillé P, Tarrade A, Dupont C, Larcher T, Dahirel M, Poumerol E, Cordier A-G, Picone O, Mandon-Pépin B, Jolivet G, Lévy R, Chavatte-Palmer P. J Dev Orig Hlth Dis, 2014, 5 (2): 88-97 

DNA methylation and transcription in a distal region Upstream from the bovine AlphaS1 casein gene after once or twice daily milking. Nguyen M, Boutinaud M, Pétridou B, Gabory A, Pannetier M, Chat S, Bouet S, Jouneau L, Jaffrezic F, Laloë D, Klopp C, Brun N, Kress C, Jammes H, Charlier M, Devinoy E. Plos One, 2014, 9 (11): e111556 

The Proto-MHC of Placozoans, a Region Specialized in Cellular Stress and Ubiquitination/Proteasome Pathways. Suurväli J, Jouneau L, Thépot D, Grusea S, Pontarotti P, Du Pasquier L, Boudinot SR, Boudinot P. J Immunol, 2014, 193: 2891-2901 

Design and Characterization of a 52K SNP Chip for Goats. Tosser-Klopp G, Bardou P, Bouchez O, Cabau C, Crooijmans R, Dong Y, Donnadieu-Tonon C, Eggen A, Heuven HC, Jamli S, Jiken AJ, Klopp C, Lawley CT, McEwan J, Martin P, Moreno CR, Mulsant P, Nabilhoudine I, Pailhoux E, Palhière I, Rupp R, Sarry J, Savre BL, Tircazes A, Jun Wang Wang W, Zhang W. Plos One, 2014, 22 (9): e86227