En savoir plus

Notre utilisation de cookies

« Cookies » désigne un ensemble d’informations déposées dans le terminal de l’utilisateur lorsque celui-ci navigue sur un site web. Il s’agit d’un fichier contenant notamment un identifiant sous forme de numéro, le nom du serveur qui l’a déposé et éventuellement une date d’expiration. Grâce aux cookies, des informations sur votre visite, notamment votre langue de prédilection et d'autres paramètres, sont enregistrées sur le site web. Cela peut faciliter votre visite suivante sur ce site et renforcer l'utilité de ce dernier pour vous.

Afin d’améliorer votre expérience, nous utilisons des cookies pour conserver certaines informations de connexion et fournir une navigation sûre, collecter des statistiques en vue d’optimiser les fonctionnalités du site. Afin de voir précisément tous les cookies que nous utilisons, nous vous invitons à télécharger « Ghostery », une extension gratuite pour navigateurs permettant de les détecter et, dans certains cas, de les bloquer.

Ghostery est disponible gratuitement à cette adresse : https://www.ghostery.com/fr/products/

Vous pouvez également consulter le site de la CNIL afin d’apprendre à paramétrer votre navigateur pour contrôler les dépôts de cookies sur votre terminal.

S’agissant des cookies publicitaires déposés par des tiers, vous pouvez également vous connecter au site http://www.youronlinechoices.com/fr/controler-ses-cookies/, proposé par les professionnels de la publicité digitale regroupés au sein de l’association européenne EDAA (European Digital Advertising Alliance). Vous pourrez ainsi refuser ou accepter les cookies utilisés par les adhérents de l'EDAA.

Il est par ailleurs possible de s’opposer à certains cookies tiers directement auprès des éditeurs :

Catégorie de cookie

Moyens de désactivation

Cookies analytiques et de performance

Realytics
Google Analytics
Spoteffects
Optimizely

Cookies de ciblage ou publicitaires

DoubleClick
Mediarithmics

Les différents types de cookies pouvant être utilisés sur nos sites internet sont les suivants :

Cookies obligatoires

Cookies fonctionnels

Cookies sociaux et publicitaires

Ces cookies sont nécessaires au bon fonctionnement du site, ils ne peuvent pas être désactivés. Ils nous sont utiles pour vous fournir une connexion sécuritaire et assurer la disponibilité a minima de notre site internet.

Ces cookies nous permettent d’analyser l’utilisation du site afin de pouvoir en mesurer et en améliorer la performance. Ils nous permettent par exemple de conserver vos informations de connexion et d’afficher de façon plus cohérente les différents modules de notre site.

Ces cookies sont utilisés par des agences de publicité (par exemple Google) et par des réseaux sociaux (par exemple LinkedIn et Facebook) et autorisent notamment le partage des pages sur les réseaux sociaux, la publication de commentaires, la diffusion (sur notre site ou non) de publicités adaptées à vos centres d’intérêt.

Sur nos CMS EZPublish, il s’agit des cookies sessions CAS et PHP et du cookie New Relic pour le monitoring (IP, délais de réponse).

Ces cookies sont supprimés à la fin de la session (déconnexion ou fermeture du navigateur)

Sur nos CMS EZPublish, il s’agit du cookie XiTi pour la mesure d’audience. La société AT Internet est notre sous-traitant et conserve les informations (IP, date et heure de connexion, durée de connexion, pages consultées) 6 mois.

Sur nos CMS EZPublish, il n’y a pas de cookie de ce type.

Pour obtenir plus d’informations concernant les cookies que nous utilisons, vous pouvez vous adresser au Déléguée Informatique et Libertés de l’INRA par email à cil-dpo@inra.fr ou par courrier à :

INRA
24, chemin de Borde Rouge –Auzeville – CS52627
31326 Castanet Tolosan cedex - France

Dernière mise à jour : Mai 2018

Menu Logo Principal Université Paris-Saclay SAPS

Virologie et Immunologie Moléculaires

Unité de Virologie et Immunologie Moléculaires

Soutenance de thèse - Cindy Bernelin-Cottet (équipe V2I)

28 Février 2019 - Amphithéâtre - Bâtiment 440

Développement d'un vaccin à ADN contre le Syndrome Dysgénésique et Respiratoire Porcin

Cindy Bernelin-Cottet (équipe V2I) a le plaisir de vous convier à sa soutenance de thèse intitulée : "Développement d'un vaccin à ADN contre le Syndrome Dysgénésique et Respiratoire Porcin". Cette thèse a été réalisée sous la direction d'Isabelle Schwartz-Cornil (INRA VIM) et financée par le projet européen Saphir Horizon 2020.

La soutenance aura lieu le jeudi 28 février 2019 à 14H00 dans l’amphithéâtre du bâtiment 440 à l’INRA de Jouy-en-Josas.

Composition du jury :

Jennifer Richardson (ANSES-ENVA-INRA, Maisons-Alfort), Rapportrice
Daniel Dory (ANSES, Ploufragan), Rapporteur
Roger Legrand (CEA, Fontenay-aux-Roses), Examinateur
Mathieu Epardaud (INRA, Nouzilly), Examinateur

Résumé :

Le Syndrome Dysgénésique et Respiratoire Porcin (PRRS) est la maladie infectieuse endémique la plus coûteuse en élevage porcin dont l'agent responsable est un Arterivirus, le PRRSV, qui présente une grande diversité génétique. L'infection par le PRRSV est fréquemment associée à l'infection par les virus influenza. La vaccination est une méthode de lutte adaptée contre ces virus. Dans le cas du PRRSV, les vaccins les plus utilisés sont des virus vivants modifiés (MLV) qui induisent une immunité protectrice peu efficace contre les variants viraux. Dans le cas du virus influenza, les vaccins inactivés utilisés présentent la même insuffisance.

Dans ce travail de thèse, j'ai évalué des stratégies vaccinales visant à induire une immunité efficace contre des variants viraux, en utilisant des antigènes conservés entre souches, adressés aux cellules présentatrices d'antigènes (APC), et j'ai analysé l'effet de différentes voies et modes d'administration.

Dans le cas du virus grippal, le ciblage d'antigènes conservés (HA2, M2e, NP) au CD11c a permis d'augmenter la réponse T uniquement lors d'administration par voie intramusculaire (IM) et fut sans effet sur la réponse anticorps. La vaccination par voie intradermique s'est traduit par une exacerbation de la pathologie lors d'une épreuve virale, alors que la vaccination par voie IM a réduit les symptômes, la durée d'excrétion virale en corrélation avec une meilleure réponse anticorps anti-HA2 et M2e.

Dans le cas du virus PRRSV qui fut mon sujet principal d'étude, j'ai cherché à optimiser des réponses lymphocytaires T IFNγ en employant une stratégie vaccinale ADN codant des antigènes contenant des épitopes T conservés entre souches, ciblés aux APC. En effet, alors que les mutations virales conduisent à un échappement aux anticorps neutralisants, la réponse lymphocytaire T IFNγ a été proposée impliquée dans la protection croisée.
J'ai montré que l'immunogénicité optimale de vaccins ADN PRRSV, conduisant à la réponse T la plus large, est obtenue par l'administration intradermique associée aux nanoparticules de PLGA (NP), suivi d'une électroporation (EP), par rapport à EP seul ou délivrance intradermique ou transcutanée avec des patches à micro-aiguilles résorbables. Cette immunogénicité optimale est associée à une bonne transfection des cellules de la peau, à une accumulation de cellules inflammatoires, et à une mobilisation des cellules dendritiques. J'ai ensuite utilisé ce mode d'administration EP+NP pour immuniser des porcs avec des plasmides codant des antigènes conservés du PRRSV adressés ou non aux APC via CD11c ou XCR1. Les porcs ont été immunisés soit avec des injections répétées d'ADN seul soit en prime-boost ADN-MLV. Le régime ADN-MLV s'est montré supérieur pour l'induction de réponse B et T à celui de l'ADN ou du MLV seuls, et le ciblage aux APC a nettement augmenté la réponse anticorps mais pas la réponse T IFNγ. Dans une expérience suivante à visée d'application sur le terrain, j'ai utilisé le régime ADN-MLV (sans NP cette fois), délivré avec EP ou avec jet sous pression (PJ). Dans ces conditions, la primo-vaccination avec ADN n'a pas significativement augmenté la réponse T IFNγ induite par le MLV, mais elle a clairement augmenté la réponse anticorps avec un bénéfice du ciblage des APC. L'immuno-potentialisation induite par la primo-vaccination ADN n'a pas conduit à l'amélioration de la protection contre une épreuve avec un virus hétérologue et a montré que cette protection n'est au final pas corrélée avec la réponse lymphocytaire T IFNγ et opère en l'absence d'anticorps neutralisants détectables. Enfin, l'ensemble de ce travail montre que l'effet du ciblage des APC chez le porc est influencé par la voie d'administration et par le régime d'administration comme le prime-boost ADN-MLV.

Abstract :

The Porcine Reproductive and Respiratory Syndrome (PRRS) is the most damaging infectious disease in pigs worldwide. The etiologic agent is an Arterivirus, the PRRSV, which presents a large genetic diversity. PRRSV infection is frequently associated with influenza virus co-infection. Vaccination is a highly suitable way to control these viruses. In the case of PRRSV, the most effective commercial vaccines are modified live vaccines (MLV) which induce only a partial protection against heterologous strains. In the case of the influenza virus, the available inactivated vaccines show the same weakness.

With the goal to control emerging influenza and PRRSV variants, I evaluated vaccine strategies involving conserved viral antigens between strains which were targeted to antigen-presenting cells (APC) and delivered by different routes and methods.

In the case of influenza virus, the targeting of conserved antigens (HA2, M2e, NP) to CD11c led to increased IFNγ T cell responses only when vaccines were delivered by the intramuscular (IM) route and had no effect on the humoral response. The intradermal route exacerbated disease following challenge whereas the IM route reduced the symptoms, the duration of viral excretion in correlation with higher anti-HA2 and anti-M2e antibody responses.

In the case of PRRSV, which was my main subject, I sought to optimize the IFNγ T cell responses by using DNA vaccines encoding antigens with conserved T-epitopes between strains, and targeted to APC. Indeed, whereas viral mutants escape neutralizing antibodies, it has been proposed that the IFNγ T cell responses are instrumental for cross-protection. I showed that the broadest T cell responses were induced by DNA vaccines combined to nanoparticles PLGA (NP) injected by the intradermal route, followed by electroporation (EP) compared with EP-only, intradermal route-only or transcutaneous dissolvable microneedles. This optimal immunogenicity was associated with a high transfection level of skin cells, an accumulation of inflammatory cells, and dendritic cells mobilisation. Next I used the EP+NP method to immunize pigs with plasmids encoding conserved PRRSV antigens targeted or not to APC via CD11c or XCR1. Pigs were immunized either with repeated injections of DNA alone or with a prime-boost DNA-MLV. The DNA-MLV regimen induced improved humoral and IFNγ T cell responses compared to DNA alone or MLV alone and the APC-targeting significantly increased the humoral response but not the IFNγ T cell response. Finally, I evaluated the DNA-MLV regimen efficacy, with an applied perspective, using naked DNA without NP and delivered by EP or by a convenient needle free injection technology (PJ). In these conditions, the DNA prime did not significantly increase the IFNγ T cell response induced by the MLV, but clearly increased the humoral response with a benefit of the APC-targeting. However, the immune potentiation induced by the DNA prime did not lead to an improved protection following a heterologous challenge. The heterologous protection was not correlated to the measured humoral and IFNγ T cell responses, and neutralizing antibodies were undetectable. Thus cross-protective effectors have not been sufficiently activated by our DNA-MLV strategy and the immune correlates of protection against heterologous PRRSV are still to be identified to develop cross-protective vaccines. Finally, this work shows that the effect of APC-targeting in pigs is influenced by delivery routes and methods and by vaccine regimen such as the prime-boost DNA-MLV.